Statistical Analysis of Modal Parameters Using the Bootstrap
نویسنده
چکیده
Structural dynamic testing is concerned with the estimation of system properties, including frequency response functions and modal characteristics. These properties are derived from tests on the structure of interest, during which excitations and responses are measured and Fourier techniques are used to reduce the data zhe inputs used in a test are frequently random, and they excite random responses h the structure of interest. when these random inputs and responses are analyzed they yiekj estimates of system properties that are random variabk and random process reaikations. Of course, such estimates of system properties vary randomly from one test to another, but even when deterministic inputs are used to excite a structure, the estimated properties vary f m test to test. when test excitations and responses are normally distributed, classical techniques permit us to Statistically analyze ihputs, responses, and some system parametem However, when the input excitations are non-normal, the system is nonlinear, and/or the property of interest is anything but the simplest# the classical analyses break abwn. The bootstrap is a technique for the statistical analysis of data that are not necessarily normaliy distributed. It can be used to statistically analyze any measure of input excitation or response, or any system pmperty, when data are available to make an estimate. It is designed to estimate the standard error, bias, and confidence intervals of parameter estimates. This paper shows how the bootstrap can be applied to the statiskal analysis of modal parameters.
منابع مشابه
Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملOutput-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data
The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...
متن کاملNoise Effects on Modal Parameters Extraction of Horizontal Tailplane by Singular Value Decomposition Method Based on Output Only Modal Analysis
According to the great importance of safety in aerospace industries, identification of dynamic parameters of related equipment by experimental tests in operating conditions has been in focus. Due to the existence of noise sources in these conditions the probability of fault occurrence may increases. This study investigates the effects of noise in the process of modal parameters identification b...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملModeling and modal analysis to oscillations of IPMC cantilever beam and simulating as an actuator
The purpose of this article is modal analysis of ionic polymer metal composite beams, then briefing the system to the unique parameters to help in up modeling of the actuator. In this paper at first using of Mathematical analysis and Closed form transfer function of cantilever beam dynamic response to the forces of different inputs (intensive and continuous) is calculated and for different type...
متن کامل